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Abstract: Spline smoothing is a technique used to filter out noise in time series observations when 

predicting nonparametric regression models. Its performance depends on the choice of the 

smoothing parameter. Most of the existing smoothing methods applied to time series data tend to 

over fit in the presence of autocorrelated errors. This study aims to determine the optimum 

performance value, goodness of fit and model overfitting properties of the proposed Smoothing 

Method (PSM), Generalized Maximum Likelihood (GML), Generalized Cross-Validation (GCV), 

and Unbiased Risk (UBR) smoothing parameter selection methods. A Monte Carlo experiment of 

1,000 trials was carried out at three different sample sizes (20, 60, and 100) and three levels of 

autocorrelation (0.2, 05, and 0.8). The four smoothing methods' performances were estimated and 

compared using the Predictive Mean Squared Error (PMSE) criterion. The findings of the study 

revealed that: for a time series observation with autocorrelated errors, Adj.  R2(PSM λ =

0.04)provides the best-fit smoothing method for the model, the PSM does not over-fit data at all the 

autocorrelation levels considered (ρ = 0.2, 0.5 and 0.8); the optimum value of the PSM was at the 

weighted value of 0.04 when there is autocorrelation in the error term, PSM performed better than 

the GCV, GML, and UBR smoothing methods were considered at all-time series sizes (T = 20, 60 

and 100). For the real-life data employed in the study, PSM proved to be the most efficient among 

the GCV, GML, PSM, and UBR smoothing methods compared. The study concluded that the PSM 

method provides the best fit as a smoothing method, works well at autocorrelation levels (ρ=0.2, 

0.5, and 0.8), and does not over fit time-series observations. The study recommended that the 

proposed smoothing is appropriate for time series observations with autocorrelation in the error 

term and econometrics real-life data. This study can be applied to; non – parametric regression, non 

– parametric forecasting, spatial, survival, and econometrics observations. 

Keywords: Cubic spline; goodness of fit; Generalized Maximum Likelihood (GML); Generalized 

Cross-Validation (GCV); and Mallow CP criterion (MCP) 

 

1. Introduction 

The smoothing spline is a spline consisting of piecewise third-request polynomials 

that go through a bunch of control focuses. The second subsidiary of every polynomial is 

ordinarily set to zero at the endpoints since this gives a limit condition that finishes the 

framework condition of 𝑚 − 2 conditions. This creates a purported "normal" cubic spline 

and prompts a straightforward tri-diagonal framework that can be settled effectively to 

give the coefficients of the polynomials. The parameters are estimated by minimizing the 

residual sum of squares (RSS) and a roughness penalty. A general test of “loyalty to 
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observation" for a curve g is the residual sum of squares. If g is allowed to be any curve – 

unrestricted in functional form, then this distance test can be reduced to zero by any g that 

interpolates the observation. The curve would not be admitted because it is not exclusive 

and because it is a structure-oriented interpretation, [1]. The spline smoothing approach 

avoids impossible interpolation of the observation by evaluating the contest between the 

tasks of producing a good fit to the observation and producing a curve without too much 

rapid local change. The main function of splines is for interpolation, but they can also be 

used for parametric and non-parametric regression modeling. The most commonly used 

spline smoothing technique is the cubic splines. Spline smoothing produces another 

technique for local polynomial regression and it is also a charming component of additives 

regression models. It is well known that correlation greatly affects the selection of 

smoothing parameter which is critical to the performance of smoothing spline. The 

commonly used approach in time series analysis is the classical ARMA method. It 

assumes linear dependence on past values and past innovations. Generalized Cross 

Validation (GCV) and Generalized Maximum Likelihood (GML) are the most appropriate 

spline smoothing method for selecting optimal value for the smoothing parameter and a 

performance criteria for smoothing parameter selection. So many scholars had carried out 

research on this area, most of them discovered that time series data assume independence 

of regressors and error terms which lead to autocorrelation problem. The application of 

smoothing parameter estimators like GCV and GML do not always solve these problems 

because they don’t occasionally smooth.  

Over the last two decades, research on spline smoothing estimation methods has 

produced a vast amount of information and discoveries from researchers in evaluating 

the efficiency and performance of the existing estimation techniques when autocorrelation 

is present in their error terms. In this research work, the proposed smoothing method is 

compared with three classical smoothing spline parameter selection techniques with the 

intention of providing a robust smoothing parameter estimation method that will alleviate 

the problem of over fitting models for time-series data with low, moderate, and high 

autocorrelation levels and the problem associated with the smoothing methods’ 

performance when different time series sample sizes are utilized. 

In Section 2, the cubic smoothing spline was discussed, method of selecting 

smoothing parameters like Generalized Cross-Validation, Generalized maximum 

Likelihood, Mallow’s CP criterion, and performance evaluation criteria were also 

discussed in this section. A simulation study and results are given in Sections. Finally, 

concluding remarks are presented in Section 4. 

2. Literature Review  

A lot of attention has been directed to studies on smoothing smoothing with 

autocorrelated error. [2] made a comparison between GCV and REML, it was 

recommended that GCV and REML are good smoothing parameter selection for small 

and medium-sized samples. [3] & [4] applied the smoothing spline method to fit a curve 

to a noisy data set, where the selection of the smoothing parameter is essential. An 

improved Cp criterion for spline smoothing based on Stein’s unbiased risk estimate has 

been proposed to select the smoothing parameter. The resulting fitted curve is superior 

and more stable than commonly used selection criteria and possesses the same asymptotic 

optimality as Cp. [5] applied most of the data-driven smoothing parameter selection 

methods and compared them based on large and small sample sizes. The parallel of 

Akaike’s information criterion and Generalized Cross-Validation is recommended as 

being the best selection criteria. For large samples, the GFAIC method would seem to be 

more appropriate while for small samples they proposed the implementation of the GCV 

criterion. [6] investigates two types of results that support the use of GCV for variable 

selection under the assumption of sparsity. The first type of result is based on the well-

established links between GCV on the one hand and Mallows’s Cp and Stein Unbiased 
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Risk Estimator on the other hand. The result states that GCV performs as well as Cp or 

SURE in a regularized or penalized least squares problem as an estimator of the prediction 

error for the penalty in the neighborhood of its optimal value. [7], [8], and [9] investigated 

the behavior of the optimal values of gamma and rho to identify simple practical rules to 

choose their optimal properties. RGCV and modified GCV perform significantly better 

than GCV. The performance is defined in terms of the Sobolev error, which is shown by 

example to be more consistent with a visual assessment of the fit than the average squared 

error. [10-12] discussed UBR and GCV for selecting the optimal knots in spline. The 

criteria for selecting the best model were based on Mean Squared Error and R-square. The 

simulation was performed on a spline truncated function with error generated from a 

Normal distribution for varied sample sizes and error variance. The results of the 

simulation study showed that GCV estimates the knots more accurately than UBR. [13] 

considered nonparametric regression problems and developed a model-averaging 

procedure for smoothing spline regression problems. Model weights were estimated 

using a delete-one-out cross-validation procedure to minimize the prediction error. A 

simulation study was performed by using a program written in R. The simulation study 

provides a comparison of the most well-known CV, generalized GCV, and the proposed 

method. The model averaging approach is straightforward to implement and gives 

reliable performances in simulations. 

It is clear from the existing literature that the goodness-of-fit of smoothing spline for 

time series observations has not been investigated so far. The paper aimed at presenting 

a goodness of fit test for time series observation using three classical cubic spline non-

parametric regression functions.  

3. Methodology  

This section discussed the methodology applied in this research work.  

3.1. Cubic Smoothing Spline Regression Model 

The most common example of the smoothing spline is the cubic spline; it is the 

smoothing spline's functional form and a piecewise cubic function that interpolates the 

dataset and ensures the smoothness of the observation. It is piecewise third-request 

polynomials that go through a bunch of focuses. It has a nonstop first and second 

subordinate with the request for the coherence of (d–1), where d is the polynomial degree. 

The Model with shortened force premise work b(x) changes the factors Xi by applying a 

premise work b(x) and fits a model utilizing these changed factors, which adds non-

linearity to the model and empowers the splines to fit smoother and adaptable Non-

straight capacities. The spline smoothing model is written as; 

 𝑦𝑖 = 𝑓(𝑡𝑖) + 𝜀𝑖 (1) 

Where; 𝑦𝑖 is the response variable, 𝑓 is an unknown smoothing function, 𝑡𝑖 is the 

independent/predictor variable and 𝜀𝑖 is zero means autocorrelated stationary process.  

The general cubic spline function is given as; 

 𝑓(𝑡) =  𝑎𝑡3 + 𝑏𝑡2 + 𝑐𝑡 + 𝑑 + 𝜀 (2) 

Where; 𝑎, b, c, and d = real number coefficients and 𝑎 ≠ 0, t = independent variable, 

𝜀 = error term, and d.f. = k-d-1 (k = number of knots and d = degree of cubic spline) 

The cubic spline smoothing estimate function is 𝑓 while; 𝑓 refers to the minimizer 

of a twice differentiable function of;  

 𝑆(𝑓)  =  ∑ (𝑦𝑖  −  𝑓(𝑡𝑖))
2

 +  𝜆 ∫ (𝑓′′(𝑡))
2

𝑑𝑡
𝑏

𝑎
𝑛
𝑖−1  (3) 

Where; 
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 𝜆 > 0 is a smoothing parameter, 

 The initial part in equation (3) refers to the residual sum of the square for 

the integrity of the information's attack. 

 The roughness penalty in the subsequent term of equation (3), is enormous 

when the incorporated second subsidiary of a regression function 𝑓′′(𝑡) is 

likewise huge  

 If λ moves toward 0, then 𝑓(𝑡) only interpolates the data set. 

 If λ is very big, then 𝑓(𝑡) would be chosen wherefore 𝑓′′(𝑡) is wherever 0, 

which will suggest a by and large direct least-squares fit the perceptions. 

 

If 𝑓(𝑡)  values are fixed at 𝑓(𝑡1), . . . . , 𝑓(𝑡2)  the roughness ∫ (𝑓′′(𝑡))
2

𝑑𝑡
𝑏

𝑎
 is 

minimized by a natural cubic spline, this solution is written as a basic function as; 

𝑓(𝑡) =  𝛽0 + 𝛽1𝑓1(𝑡)+ . . . + 𝛽𝑛+3𝑓𝑛+3(𝑡) 

3.2. Generalized Cross-Validation (GCV) Estimation Method with an Autocorrelation 

Structure 

The term Generalized Cross-Validation (GCV) was proposed by [14] and [17] as a 

replacement for Cross-Validation (CV), it is the most popular method for choosing the 

complexity of statistical models. The basic principle of cross-validation is to leave the data 

points out one at a time and to choose the value of λ under which the missing data points 

are best predicted by the remainder of the data. To be precise, let 𝑔𝜆
−1 be the smoothing 

spline determined from all the information sets aside from (𝑡𝑖 , 𝑦𝑖), utilizing the worth λ 

for the smoothing boundary. The cross-validation decision regarding λ can then be the 

estimation of λ which can be written as; 

 𝐶𝑉(𝜆)  =
1

𝑛
∑{𝑦𝑖 − �̂�(𝑡𝑖)}

2 (4) 

Equation (4) is similar to the test for regression model estimation [16]. Define a matrix A 

(λ) by; 

 𝐴𝑖𝑗(𝜆)  =  𝑛−1𝑔(𝑡𝑖 , 𝑡𝑗) (5) 

 𝐶𝑉(𝜆) =
1

𝑛
∑

{𝑦𝑖−�̂�(𝑡𝑖)}
2

{1−𝐴𝑖𝑖(𝜆)}2
𝑛
𝑖=1  (6) 

Wang, Meyer & Opsomer (2013) [15] also proposed the application of a related test 

referred to as the Generalized Cross-validation, acquired from equation (6) by substituting 

𝐴𝑖𝑖(𝜆) with its mean value, 𝑛−1𝑡𝑟𝐴(𝜆), this gives the score. 

 𝐺𝐶𝑉(𝜆) =
𝑛−1𝑅𝑆𝑆(𝜆)

(1−𝑛−1𝑡𝑟𝐴(𝜆))2
 (7) 

Where; RSS (λ) refers to the residual sum of squares. [17] also gave hypothetical 

contentions to prove that GCV ought to pick an ideal estimation of λ in the function of 

minimizing the mean squared error (MSE) at the design points. The forecast published 

practical examples bear out a good performance in [18]. The summed-up Cross-validation 

technique is notable for its optimal qualities [19]. For any given 𝑛 ×  𝑛, the impact matrix 

is given as; 
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[
 
 
 
 
 
 
𝑓𝑛, 𝜆(𝑡1)

𝑓𝑛, 𝜆(𝑡2)
.
.
.

𝑓𝑛, 𝜆(𝑡𝑛)
 ]

 
 
 
 
 
 

=𝑆(𝜆)𝑦, (8) 

therefore W0 (λ) can be revised as; 

 𝑊0(𝜆)  =  
∑ (𝑎𝑘𝑗𝑦𝑗− 𝑦𝑘)

2𝑛
𝑘=1

(1−𝑎𝑘𝑘)2
 (9) 

Where; Generalized Cross-Validation is the changed type of Cross-Validation, a 

customary method for assessing the smoothing boundary. The GCV score is built by 

correlation with the CV score which is gotten from the normal residuals by dividing them 

by1 − (𝑆𝜆)𝑖𝑖. The acknowledged arrangement of GCV is to replace the documentation 

1 − (𝑆𝜆)𝑖𝑖 in Cross-Validation with a mean score of 1 − 𝑛−1 follow(𝑆𝜆). Consequently, 

by adding the residual squared and notation {1 − n−1 trace (Sλ)}2, by the known conventional 

cross-approval, the GCV smoothing technique is composed numerically as; 

 𝐺𝐶𝑉(𝜆) =  
1

𝑛
 

∑ {𝑦 − 𝑓𝑘(𝑥1)}2𝑛
𝑘=1

{1 − 𝑛−1𝑡𝑟𝑎𝑐𝑒(𝑆𝜆)}2
 (10) 

 𝐺𝐶𝑉(𝜆)  =
𝑛−1‖(𝐼 − 𝑆𝜆)𝑦‖2

[𝑛−1𝑡𝑟𝑎𝑐𝑒(𝐼 −𝑆𝜆 )]2
  (11) 

Where; n is observations or data set, λ is the smoothing parameter, Sλ refers to the 

ith diagonal member of the smoothing matrix    

The first research on cross-validation was conducted by [20], which was 

subsequently augmented to the log periodogram's smoothing [21]. The term Generalized 

Cross-Validation (GCV) was determined by [20]. The GCV score figured by similarity to 

the CV score can be obtained from the normal residuals by isolating them by1 − (𝑆𝜆)𝑖𝑖. 

The essential plan of GCV is to supplant the components 1 − (𝑆𝜆)𝑖𝑖 with the mean score 

1 −  𝑛 − 1 𝑡𝑟(𝑆𝜆). Consequently, adding the squared revised remaining and factor {1 −

 𝑛 − 1 𝑡𝑟(𝑆𝜆)}. Given the spline smoothing for non-parametric assessment of a relapse 

work in a period series setting and accepting that the reaction variable 𝑦𝑖 are taken on the 

occasion 𝑡𝑖, for 𝑖 =  1, . . . , 𝑛 and that a model of the structure creates the 𝑦𝑖 

 𝑦𝑖  =  𝑓(𝑡𝑖)  +  𝑍(𝑡𝑖) (12) 

Where 𝑓(. )  refers to the smoothing function and 𝑍(𝑡𝑖)  refers to the zero-mean, 

Autocorrelated stationary process. It can be said that even though ti is specific, it is not 

uniformly spaced, with t1 < . . . < tn 

If the 𝑍(𝑡𝑖) in (12) has a known correlation function, with𝐶𝑜𝑣𝑍(𝑡1, . . . , 𝑡𝑛) = 𝜎2𝑣𝑖𝑗,a 

normal addition of the usual smoothing spline approach amongst is to estimate f by the 

𝑓which minimizes; 

 (𝑦 − 𝑓)
𝑇
𝑊(𝑦 −  𝑓)  +  𝜆 ∫ {𝑓′′(𝑡)}2𝑑𝑡

𝑏

𝑎
 (13) 

Amid every properly smoothed function f, it is confirmed that 𝑊 =  𝑉 − 1 =

 [𝑣𝑖𝑗], 𝑦 =  (𝑦1, . . . , 𝑦𝑛)𝑇 and 𝑓 =  (𝑓(𝑡1), . . . , 𝑓( 𝑡𝑛))𝑇. It has been proven that the function  

𝑓 remains a natural cubic spline that has knots at the tj. Also, if 𝑓 denotes the vector with 

the ith element 𝑓(𝑡𝑖) then there is a matrix Sλ such that𝑓  =  𝑆(𝜆𝑦), i.e. for fixed λ, the 
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estimate is a direct capacity of y. This linearity proposes a nearby association between 

spline smoothing and bit smoothing, as shown unequivocally in [22]. One approach to 

picking the parameter denoted by λ is for the generalized cross-correlation to be 

minimized [17]. In the current setting, the common extension of this model is to limit 

equation (13); this gives a technique for assessing g within the sight of a realized 

autocorrelation structure. Concerning span assessment of g, the Bayesian assumption 

presented by [22] extends with the connection network and V is replaced by Silverman's 

inverse inclining weighting lattice, which presents the posterior difference matrix, written 

as;  

 𝑉𝑎𝑟(𝑓)  = 𝜎2𝐴(𝜆)𝑉 (14) 

The minimization of GCV (λ) as proposed by [23] and [24] is written as; 

 𝐺𝐶𝑉(𝜆)  =  
(𝑦 − �̂�)

𝑇
𝑊(𝑦 − 𝑓)

[𝑡𝑟𝑎𝑐𝑒(𝐼 − 𝑆𝜆)]2
 (15) 

Where; (𝑆𝜆) is the 𝑖𝑡ℎ diagonal element of the smoother matrix, 𝑊 =  𝑉 − 1 =  [𝑣𝑖𝑗], the 

correlation function, y is (𝑦𝑖 , . . . , 𝑦𝑛)𝑇, 𝑓 =  (𝑓(𝑡1) , . . . , 𝑓(𝑡𝑛))𝑇   

3.3. Generalized Maximum Likelihood (GML) Estimation Method with Autocorrelation 

Structure 

[25] proposed the GML technique for correlated data that possesses a single 

parameter for smoothing observations. However, there exist two parameters for 

smoothing in the case of a bivariate model that should be assessed along with the 

covariance boundaries. Following a comparative determination, GML is given as; 

 𝐺𝑀𝐿(𝜆)  =  
𝑦ᴵ(𝐼 − 𝑆𝜆)

[𝑑𝑒𝑡+(𝐼 −𝑆𝜆 )]
1

𝑛−𝑚

  (16) 

Where; det+ (𝐼 −  𝑆𝜆)  refers to the product of (𝑛 −  𝑚)  non-zero eigenvalues 

of (𝐼 −  𝑆𝜆). [25] provided a Bayesian model for the GML method's general framework 

and can calculate a spline estimate's posterior confidence intervals. Suppose that the data 

are simulated via the; 

  𝑦𝑖 = 𝑓(𝑡𝑖) + 𝜀𝑖 , 𝑖 =  1,2, . . . , 𝑛,     𝑡𝑖𝜖[0,1] (17) 

Where; ∈= (∈1, . . . , ∈𝑛)~𝑁(0, 𝜎2,𝑊−1) which do not dependent on f, Model (17) is 

usually referred to as a Bayesian model, it can also be known as a hierarchical model or a 

mixed-effects model. This Bayesian model is similar to the model illustrated by [19], 

though the residuals are correlated. Based on the justification of [19], it can be shown that; 

 lim
𝑛→∞

𝐸(𝑓(𝑡)/𝑦) = 𝑓𝑡 𝑎𝑛𝑑 𝑙𝑖𝑚
𝑛→∞

𝑐𝑜𝑣(𝑓/𝑦) = 𝜎2,𝑊−1 (18) 

Where; 𝐹 =  (𝐹 (𝑡1). , . . , 𝐹(𝑡𝑛))’ and 𝜎 → ∞   expanded prior are estimated for 

polynomial coefficients with degrees smaller than m.  

According to [25], the covariance matrix W-1 relies on several correlations with 

parameter vector of 𝜏 . Interestingly, covariance structures refer to first-order 

autoregressive for time-series observation, structured symmetry or unstructured for 

repeated measurements, and spatial data. GML with Autocorrelation structure is 

therefore given by; 

 𝐺𝑀𝐿(𝜆)  =  
𝜆ᴵ𝑊(𝐼 − 𝑆𝜆)

[𝑑𝑒𝑡+𝑊(𝐼 − 𝑆𝜆)]
1

𝑛−𝑚

 (19) 
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Where; 𝑑𝑒𝑡+(𝐼 − 𝑆𝜆) is the product of the 𝑛 –  𝑚 nonzero eigenvalues of (I – Sλ), λ 

is the Smoothing parameter, 𝑊 is the structure of the correlation, 𝑆𝜆 is the smoother 

matrix diagonal elements, 𝑛 = 𝑛1  +  𝑛2 are the pair of observations and 𝑚 = the number 

of zero eigenvalues. 

3.4. Unbiased Risk (UBR) Estimation Method with Autocorrelation Structure 

Unbiased Risk is also known as Mallow’s CP criterion; it was developed by [26] to 

evaluate the regression model fit dependency on Ordinary Least Square (OLS). It is used 

to estimate choice situations where explanatory variables can predict a few results and 

locate the best model associated with the subset of independent variables. The more 

modest the estimation of the Cp, the generally exact it is, the Cp is written numerically as; 

 𝑈𝐵𝑅 (𝜆)  =
 ‖(𝑆𝜆 − 𝐼)𝑦‖2

𝑡𝑟(𝐼−𝑆𝜆)
 (20) 

[25] provides the UBR technique that can be used effectively to choose a smoothing 

parameter for cubic spline smoothing that possesses non-Gaussian information. It was 

developed by using Predictive Mean Square Errors (PMSE).   

The Unbiased Risk with Autocorrelation structure can be written mathematically as; 

 𝑈𝐵𝑅(𝜆)  =  

1

𝑛
‖𝑊

𝑘
2(𝐼 − 𝑆𝜆)𝑦‖

2

[
1
𝑛𝑡𝑟𝑎𝑐𝑒(𝑊𝑘−1(𝐼 − 𝑆𝜆))]

2 k = 0, 1, 2 (21) 

Where; n is the measurement/observations {𝑥𝑖, 𝑦𝑖},  W is the Autocorrelation 

structure, λ is the parameter used for smoothing and 𝑆𝜆 is the matrix smoother of the 𝑖𝑡ℎ 

diagonal member. 

3.5. Proposed Smoothing Method (PSM) with Autocorrelation Structure 

A smoothing spline model is usually written as: 

  i i iy f x     (22) 

Where; y refers to the response variable, x refers to a predictor variable, f is the 

Regression function and 𝜀𝑖 ~ 𝑁(𝑁(0, 𝜎𝑊−1)).  

There are several options to examine whenever model (22) is used for non-linearity, 

it incorporates, observation change, and adds substance items, for example, cubic spline 

and Spline smoothing. This research work is keen on spline smoothing because it 

examines non-linearity dependent on regression bend by presenting a wrinkle or twists 

in these crimps created by pivot work, and the place of the turn on the fit is called hitches.  

The traditional regression analysis's primary purpose is to minimize the residual sum 

of squares (RSS); the model with the minimum RSS is the preferred model. It is important 

to note that [27] proposed Cross-Validation (CV) as a technique for estimating Spline 

Smoothing. Instead of RSS in the customary straightforward simple regression, the 

residual is characterized. 

In this manner, an improved spline smoothing technique is proposed by adding the 

weighted parameters k and k − 1 with the other properties and qualities of the UBR and 

GCV [28] and [29]. The combination of the two smoothing methods' quantities will result 

in the optimal performance of smoothing methods whose model does not overfit time-

series observations. The minimizer is the Proposed Smoothing Method (PSM) with 

autocorrelation structure given as; 

PSM = (k) overfitting and optimal knot detector + (1 − 𝑘) best for forecasting non-

Gaussian data 
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 𝑃𝑆𝑀 (𝜆) = 𝑘
(𝑦 − �̂�)

𝑇
𝑊(𝑦 − �̂�)

[𝑡𝑟𝑎𝑐𝑒(𝐼 − 𝑆𝜆)]2
 + (1 − 𝑘)

1

𝑛
‖𝑊

𝑔
2 

(𝐼−𝑆𝜆)‖

2

[
1

𝑛
𝑡𝑟𝑎𝑐𝑒{𝑊𝑔−1(𝐼 −𝑆𝜆 )}]

2 (23) 

The behavior of the minimized λ in UBR and GCV techniques under the alternate 

value of g = 1 as the optimum value of PSM yields;  

 𝑃𝑆𝑀 (𝜆) = 𝑘
(𝑦 − �̂�)

𝑇
𝑊(𝑦 − �̂�)

[𝑡𝑟𝑎𝑐𝑒(𝐼 −𝑆𝜆 )]2
 + (1 − 𝑘)

1

𝑛
‖𝑊

1
2 

(𝐼−𝑆𝜆)‖

2

[
1

𝑛
𝑡𝑟𝑎𝑐𝑒{𝑊(𝐼 −𝑆𝜆 )}]

2 (24) 

The proposed method for estimating f is given in (27) subject to the condition that 

0 < 𝑔 < 1 is chosen, using the algorithm in section 3.6. [30-32]. 

Where; n is the number of the dataset, k is the weighted value, 0 < 𝑘 < 1, W = V-1 = 

Correlation Matrix for the error term, y = (y1, . . . ,yn)T is the Smoothing function, 𝑓  =

 (𝑓(𝑡1).  .  . 𝑓(𝑡𝑛)). 𝑦𝑛)𝑇  = Sλy, Sλ is the diagonal member of the smoothing matrix, 

‖𝑊
1

2
 (𝐼 − 𝑆𝜆)𝑦‖= norm of the Euclidean vector 𝑊

1

2(𝑦 − 𝑓). 

3.6. Proposed Smoothing Method (PSM) Algorithm 

Step 1: Read the simulated sample data(𝑥𝑖 , 𝑦𝑖)  for i = 1 – T and for each of the si'

determine the Pre-selected smoothing parameters 𝜆1 , .  .  . , 𝜆𝑡 , calculate the 

respective set of smoothing Spline estimates 𝑓(𝜆) =  {𝑓𝜆1 , . . . , 𝑓𝜆𝑡  }   

Step 2: For the given λ, σ and T use the data in 1 above to fit a curve and the estimate 

ahead by linear extension 𝑓(𝑥𝑖) and 𝑓(𝑥𝑖) 

Step 3: Insert the weighted value (k) of the coefficients of GCV and UBR 

Step 4: Obtain the predictive mean square error 𝑃𝑀𝑆𝐸 (𝑓𝜆) =  ∑ [(𝑓(𝑥)  − 𝑓(𝑥𝑖)))
2

]𝑡
𝑖 = 1  

for these points  

Step 5: add all values of PMSEs to get the resulting PSM value for the given λ and ρ. 

Step 6: Repeat steps 1–5 for 1000 times. 

3.7. Monte Carlo Simulation study 

This part is concerned with the outcome of a Monte Carlo simulation study. This 

study was led to assess the achievement of the four smoothing techniques depicted in this 

research, for example, GML, GCV, UBR, and PSM. The dataset was generated by applying 

a program written in R (version 3.2.3) for time-series sample sizes of; 20, 60, and 100. The 

experiment was replicated at 1,000 for every one of the examples. The Predictive Mean 

Squared-Errors (PMSE), adjusted R-Square and predicted R-square was utilized to assess 

the smoothing techniques' quality and performance for each simulated data. 

3.8. Equation used to generate the value in the data 

The data generation study performed to assess and measure the performance of the 

four spline smoothing methods is given as;  

 𝑦(𝑡)  = 2𝑆𝑖𝑛 (
𝜋

𝑡
) + 𝜀𝑡     t = 20, 60, and 100 (25) 
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Where; 𝜋 = 1800, 𝜀𝑡 ~ 𝑁(0, 𝜎𝑊−1), a first-order autoregressive process AR (1) with 

a mean of 0, a standard deviation of 0.8, and autocorrelation levels (ρ) of 0.2, 0.5, and 0.8 

with a 95% confidence limit, Note that; 𝑒𝑡 =  𝜌𝜀𝑡−1 + 𝑣𝑡 and 𝑣𝑡~𝑁(0, 𝜎2) 

3.9. Experimental design and data generation 

The experimental design adopted in this study is;  

 Three-time-series samples (T) of 20, 60, and 100 were considered in the data 

generation 

 Three autocorrelation levels were considered, i.e.  ρ = 0.2, 0.5 and 0.8 

 One standard deviation value was considered, i.e. 𝜎 =  0.8 

 The dataset was simulated for 1,000 replications in each of the 3 x 3 x 4 x 1 = 

36 combinations for cases T’s, ρ’s, λ’s, and σ’s. 

 

All the selected parameters the in experimental design are similar to the ones used in 

[33]. 

3.10. Smoothing Spline Assessment methods used in this Study 

Efforts were made in this study to examine and compare the strength of the four 

spline smoothing estimators, namely; Generalized Cross-Validation (GCV), Unbiased risk 

(UBR), Generalized Maximum Likelihood (GML), and the Proposed Smoothing Method 

(PSM) developed by taking the weighted hybrid of GCV and UBR. 

(i) Predictive Mean Square Error 

A comparison was made to test the four estimation methods' effect and performance 

in the presence of autocorrelation error. An estimate of the four smoothing methods, the 

criterion, effect, and performance of different autocorrelation errors of the four estimation 

methods (i.e. Generalized Crossed Validation (GCV), Generalized Maximum Likelihood 

(GML), Proposed Smoothing Methods (PSM) (0 < k < 1) and Unbiased Risk (UBR)) were 

performed using codes written in R-console. Four different estimation methods were used 

i.e. GCV (V), GML (M), PSM (0 < k < 1), and UBR (U). This data generation was carried 

out for V, M, P, and U. At the same time, the Evaluation and comparison of the Four (4) 

Spline Smoothing estimation methods were investigated by applying the asymptotic 

sampling qualities of the criterion given as; Mean Square Prediction Error (MSPE). 

The Predictive Mean squared error (PMSE) of a smoothing curve or model fitting 

process, according to [26] and [4], is the difference between the expected value of the 

square difference of the fitted value, that is; function 𝑓(𝑥𝑖)  and the observed value 

estimate is given as the function  𝑓(𝑥𝑖). It is utilized to estimate the performance and 

attributes of smoothing methods like Cross-Validation, Generalized Cross-Validation, 

and Generalized Maximum Likelihood, etc. The Predictive Mean Square Error (PMSE) is 

written numerically as;  

 𝑃𝑀𝑆𝐸(𝜆) =  𝐸 [∑ (𝑓(𝑥𝑖) − 𝑓(𝑥𝑖))
𝑛
𝑖=1

2

] (26) 

The Predictive Mean Square Error is usually separated into two parts; the initial part 

is the sum of square biases of the fitted qualities, and the other part is the number of 

changes in the fitted observations. 

Where; 

𝑓(𝑥𝑖)  = observed value 

𝑓(𝑥𝑖) = predicted or estimated value 

At each scenario of specification, for instance, say, time-series size (T) = 20, 

autocorrelation level (ρ) = 0.2, d.f = 1, and standard deviation (σ) = 0.8, the smoothing 
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methods were tested and compared using the asymptotic properties of the estimators 

based on the PMSE criterion. 

(ii)Test for Over-fitting in Spline Smoothing  

In statistics, overfitting occurs when a model fails to fit extra information or neglects 

to anticipate future perceptions reliably. PRESS and Predicted R-square are the best and 

easiest ways to discover overfitted in smoothing methods and models. The result may be 

interpreted by simply comparing the predicted R-Square to the normal R-Square and 

observing if there exist is a great difference between the two test techniques. If there is a 

large difference between the two values, the model doesn’t predict new observations and 

fits the true data, and there is the possibility of overfitting the model. Overfit model has 

too many numbers and terms and begins to fit the random noise in the sample; it is not 

possible to predict random noise. The Predictive R-square is a statistical technique that 

determines how well a model predicts a response for new observation. It is something of 

an in-house cooked measure, which is computed by effectively eradicating each variable 

from the data set, estimating the regression model, and deciding how suitable the model 

forecasts the removed variables. Predictive R-square is usually written mathematically as; 

 𝑃𝑟𝑒𝑑. 𝑅 − 𝑆𝑞𝑢𝑎𝑟𝑒 = (1 −
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 (𝑃𝑅𝐸𝑆𝑆)

𝑆𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒 𝑡𝑜𝑡𝑎𝑙
) × 100 (27) 

While R-square, also known as the coefficient of determination, can be derived 

through;  

 𝑅 − 𝑆𝑞𝑢𝑎𝑟𝑒 =  (1 −
𝑆𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑒𝑟𝑟𝑜𝑟

𝑆𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒 𝑡𝑜𝑡𝑎𝑙
) (28) 

(iii) Test for Goodness-of-fit for the Smoothing Methods 

The goodness-of-fit of the smoothing methods explains how well the methods fit the 

simulated and real-life data. It also summarizes the differences between the observed 

value and predicted or estimated values. The Adjusted R-square was used to determine 

the best-fit smoothing methods. It is written mathematically as; 

 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅 − 𝑆𝑞𝑢𝑎𝑟𝑒 =  (1 −
(1−𝑅𝑠𝑞𝑢𝑎𝑟𝑒)×(𝑛−1)

𝑛−𝑝
) (29) 

Where; n = several observations and p = many parameters. 

4. Results and Discussion  

Tables 1 to 3 present the summary fit result of the smoothing spline regression model 

and the model performance criteria, i.e. the PMSE, multiple R-square, adjusted R-Square, 

and predicted R-square based on time-series periods (T=60), four degrees of smoothing 

(D.S.=1, 2, 3 and 4) and autocorrelation level (ρ = 0.5). It was revealed from the result that 

all the coefficients of the smoothing methods’ parameters were significant at (P-value 

<0.001, <0.01, and < 0.05). 

The PMSE of the four smoothing techniques indicated that; the Proposed Smoothing 

Method (PSM = 0.18) had the smallest PMSE of 0.757980 at T = 60, D.S. = 2, and ρ=0.5. This 

was closely followed by, UBR with PSME of 1.017353 at T = 60, D.S. = 2, and ρ = 0.5 then, 

GML with PSME of 1.300494 at T = 60, D.S. = 2 and𝜌 = 0.5. The result implies that; the 

Proposed Smoothing Method (PSM = 0.18) performs better than the other smoothing 

methods at a time series size (T =60) and rho = 0.5. 

The adjusted R-Square result showed that the Proposed Smoothing Method (PSM = 

0.18) had the largest values of 0.8095 at, T = 60, D.S. = 2, and ρ=0.5, which is closely followed 

by the Proposed Smoothing Method (PSM = 0.20) with the value of 0.7879 when T = 20, 
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D.S. = 2 and ρ=0.5, then GCV smoothing method with 0.7828 at T = 60, D.S. = 2 and𝜌 = 0.5. 

It can be inferred from the result above that; the Proposed Smoothing Method (PSM = 

0.18), provides the best fit to the time-series observations at a time-series size (T = 60) and 

rho = 0.5. 

It can be seen from the result presented in Table 1-3 that the difference between the 

Multiple R-square and predictive R-square of the Proposed Smoothing Method was the 

least when compared to the other smoothing methods. At T = 60, D.S. = 1, 2, 3, and 4,𝜌 =

0.5, the differences between the Multiple R-Square and predictive R-square were 0.3669, 

0.0364, 0.4599, and 0.1759 respectively. This result shows that the Proposed Smoothing 

Method does not overfit the time series observations when the time-series size of 60 and 

rho = 0.5. 

Table 1. Simulation Result for Smoothing Spline Regression Model of GML, GCV, PSM, and 

UBR for T=20, and ρ = 0.2, 0.5 

Conditions 
Smoothing 

Methods 
𝛽𝑖 

Smoothing 

Parameter 

Selection criteria 

PMSE R Square Adj. R Square Pred. R Square 

T = 20,  𝜌 = 0.2 

 
GML 

𝛽0 = 0.5596 

𝛽1 = 5.9713** 

𝛽2 = -23.5218* 

𝛽3 17.3125** 

0.04384406 

1.34165 

 

 

 

0.6663 0.6037 0.000 

T = 20 𝜌 = 0.2 

 

 

GCV 

 

𝛽0 = -0.2034 

𝛽1 = 14.7471** 

𝛽2 = -42.272*** 

𝛽3 = 27.8714*** 

0.0001058604 

0.956241 

 

 

 

0.6884 0.6299 0.0009 

T = 20 𝜌 = 0.2 

 

UBR 

 

𝛽0 = -0.1656 

𝛽1 = 9.2593 

𝛽2 = -25.7615* 

𝛽3 = 16.5350* 

0.06503716 

2.59853 

 

 

 

0.5401 0.4538 0.000 

T = 20, 𝝆 = 𝟎. 𝟐 

 

PSM (K 

=0.04) 

𝜷𝟎 = -0.1376 

𝜷𝟏 = 12.0791*** 

𝜷𝟐 = -35.2248*** 

𝜷𝟑 = 234056*** 

0.06243990 

0.046857 

 

 

 

0.9678 0.9618 0.6428 

T = 20, D.S. = 4, 

𝜌 = 0.5 

 

GML 

𝛽0 = 0.1047 

𝛽1 = 11.7009*** 

𝛽2 = -36.7510*** 

𝛽3 = 25.1998*** 

0.02464804 

1.47087 

 

 

 

0.7143 
0.6608 

 
0.0009 

T = 20, D.S. = 4, 

𝜌 = 0.5 

 

 

GCV 

 

𝛽0 = 0.1513 

𝛽1 = 9.9033** 

𝛽2 = -30.5509*** 

𝛽3 = 20.5665*** 

0.00012548 

1.437364 

 

 

 

0.7653 0.7213 0.020 

T = 20, D.S. = 4, 

𝜌 = 0.5 

 

UBR 

 

𝛽0 = -0.1341 

𝛽1 = 10.1868*** 

𝛽2 = -31.8230*** 

𝛽3 = 21.9838*** 

0.2490225 

1.14616 

 

 

 

0.7363 0.6868 0.0013 

T = 20, D.S. = 4, 

𝜌 = 0.5 

 

PSM (K 

=0.16) 

𝛽0 = -0.3008 

𝛽1 = 10.4908*** 

𝛽2 = -28.9898*** 

𝛽3 = 18.8467*** 

0.20919897 

 

1.794844 

 

 

 

0.8802 

 
0.8577 0.742 

T = 20, D.S. = 4, 

𝜌 = 0.8 

 

 

GML 

𝛽0 = 0.3308 

𝛽1 = 9.6598 

𝛽2 = -32.6249* 

𝛽3 = 23.2359** 

0.0150933 

2.16225 

 

 

 

0.5406 0.4545 0.000 
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T = 20, D.S. = 4, 

𝜌 = 0.8 

 

 

GCV 

 

𝛽0 = 0.5529 

𝛽1 = 8.6756 

𝛽2 = -30.8329 * 

𝛽3 = 21.8131** 

0.0006287 

 

2.188967 

 

 

 

0.6508 0.5854 0.122 

T = 20, D.S. = 4, 

𝜌 = 0.8 

 

 

UBR 

 

𝛽0 = 0.02747 

𝛽1 = 13.26481** 

𝛽2 = -42.53308*** 

𝛽3 = 30.18391*** 

0.6178076 

2.49091 

 

 

 

0.7091 0.6545 0.000 

T = 20, D.S. = 4, 

𝜌 = 0.8 

 

 

PSM (K 

=0.28) 

𝛽0 = -0.04164 

𝛽1 = 10.37883* 

𝛽2 = -32.14938** 

𝛽3 = 21.52423** 

0.44499741 

 

1.483121 

 

 

 

0.7442 0.6962 0.3567 

Table 2. Simulation Result for Cubic Spline Regression Model of GML, GCV, PSM, and UBR 

for T=60, and ρ = 0.2 

Parameters 
Smoothing 

Methods 
𝛽𝑖 

Smoothing 

Parameters 

Selection criteria 

PMSE R Square 
Adjusted R-

Square 
Pred. R –Square 

T = 60, D.S. = 

4, 𝜌 = 0.2 

 

GML 

𝛽0 = -0.02920 

𝛽1 =10.77812*** 

𝛽2 = -31.19231*** 

𝛽3 = 21.57675*** 

0.001546984 

3.615946 

 

 

 

0.9478 0.945 0.000 

T = 60, D.S. = 

4, 𝜌 = 0.2 

 

 

GCV 

 

𝛽0 = -0.14492 

𝛽1 = 10.83452*** 

𝛽2 = -31.70387*** 

𝛽3 = 21.11344*** 

6.08904e-05 

2.018062 

 

 

 

0.9454 0.9425 0.022 

T = 60, D.S. = 

4, 𝜌 = 0.2 

 

UBR 

 

𝛽0 = -0.11607 

𝛽1 = 11.22499*** 

𝛽2 = -33.07054*** 

𝛽3 = 22.13243*** 

0.04321843 

3.398581 

 

 

 

0.9553 0.9529 0.000 

T = 60, D.S. = 

4, 𝜌 = 0.2 

 

PSM (K 

=0.08) 

𝛽0 = -0.25494** 

𝛽1 = 12.44873*** 

𝛽2 = -35.69443*** 

𝛽3 = 23.63443*** 

0.039765827 

 

2.416724 

 

 

 

0.9459 0.9422 0.7752 

T = 60, D.S. = 

4, 𝜌 = 0.5 

 

GML 

𝛽0 = -0.2659 

𝛽1 = 12.3001*** 

𝛽2 = -35.1093*** 

𝛽3 = 23.1599*** 

0.001259269 

2.16225 

 

 

 

0.7355 

 
0.7213 0.000 

T = 60, D.S. = 

4, 𝜌 = 0.5 

 

 

GCV 

 

𝛽0 = -0.2518 

𝛽1 = 12.452*** 

𝛽2 = -36.210*** 

𝛽3 = 25.1076*** 

9.37482e-05 

2.188967 

 

 

 

0.7384 0.7453 0.021 

T = 60, D.S. = 

4, 𝜌 = 0.5 

 

UBR 

 

𝛽0 = -0.3808 

𝛽1 = 13.5769*** 

𝛽2 = -38.1391*** 

𝛽3 = 25.0224*** 

0.02952382 

2.49091 

 

 

 

0.7791 0.7672 0.000 

T = 60, D.S. = 

4, 𝜌 = 0.5 

 

PSM (K 

=0.20) 

𝛽0 = -0.2591 

𝛽1 = 11.4306*** 

𝛽2 = -32.4205*** 

𝛽3 = 21.5264*** 

0.023637806 

 

1.733162 

 

 

 

0.7879 0.7766 0.612 
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T = 60, D.S. = 

4, 𝜌 = 0.8 

 

GML 

𝛽0 = 0.1528 

𝛽1 = 10.3817*** 

𝛽2 = -32.6398*** 

𝛽3 = 22.4550*** 

0.001038157 

2.996486 

 

 

 

0.5791 0.5565 0.000 

T = 60, D.S. = 

4, 𝜌 = 0.8 

 

 

GCV 

 

𝛽0 = 0.1035 

𝛽1 = 8.5890*** 

𝛽2 = -25.6512*** 

𝛽3 = 16.6920*** 

9.757026e-05 

1.456264 

 

 

 

0.5882 0.5661 0.010 

T = 60, D.S. = 

4, 𝜌 = 0.8 

 

UBR 

 

𝛽0 = -0.5286 

𝛽1 = 15.0744*** 

𝛽2 = -41.1956*** 

𝛽3 = 22.2068*** 

0.05817642 

2.564013 

 

 

 

0.5723 0.5494 0.000 

T = 60, D.S. = 

4, 𝜌 = 0.8 

 

PSM (K 

=0.32) 

𝛽0 = 0.4314 

𝛽1 = 8.4836** 

𝛽2 = -30.6451*** 

𝛽3 = 22.0310*** 

0.039591188 

 

1.0654 

 

 

 

0.6401 0.6208 0.433 

Table 3. Simulation Result for Cubic Spline Regression Model of GML, GCV, PSM, and UBR 

for T=100, and ρ = 0.2 

Parameters 
Smoothing 

Methods 
𝛽𝑖 

Smoothing 

Parameters 

Selection criteria 

PMSE R Square 
Adjusted R-

Square 
Pred. R –Square 

T = 100, D.S. = 

4, 𝜌 = 0.2 

 

GML 

𝛽0 = -0.12003* 

𝛽1 = 10.88492*** 

𝛽2 = -31.70714*** 

𝛽3 = 21.05287*** 

0.000955618 

1.973208 

 

 

 

0.9300 0.9279 0.000 

T = 100, D.S. = 

4, 𝜌 = 0.2 

 

 

GCV 

 

𝛽0 = -0.11858 

𝛽1 = 11.47119*** 

𝛽2 =-33.74040*** 

𝛽3 = 22.58175*** 

0.000054114 

0.332736 

 

 

 

0.9474 0.9458 0.000 

T = 100, D.S. = 

4, 𝜌 = 0.2 

 

UBR 

 

𝛽0 = -0.19474** 

𝛽1 = 11.64251*** 

𝛽2 = -33.84756*** 

𝛽3 = 22.51969*** 

0.02506713 

1.337717 

 

 

 

0.9535 0.9521 0.011 

T = 100, D.S. = 

4, 𝜌 = 0.2 

 

PSM (K 

=0.12) 

𝛽0 = -0.20195** 

𝛽1 =-12.07546*** 

𝛽2 = -35.23636*** 

𝛽3 = 23.62322*** 

0.022065568 

 

1.207069 

 

 

 

0.9353 0.9333 0.5438 

T = 100, D.S. = 

4, 𝜌 = 0.5 

 

 

GML 

𝛽0 = -0.1604 

𝛽1 = 11.3986*** 

𝛽2 = -32.6706*** 

𝛽3 = 21.5384*** 

0.000842476 

1.984518 

 

 

 

0.7532 0.7455 0.009 

T = 100, D.S. = 

4, 𝜌 = 0.5 

 

 

GCV 

 

𝛽0 = -0.2635 

𝛽1 = 12.6782*** 

𝛽2 = -36.9091*** 

𝛽3 = 24.7118*** 

0.0001544047 

2.765412 

 

 

 

0.7876 0.7803 0.0112 

T = 100, D.S. = 

4, 𝜌 = 0.5 

 

 

UBR 

 

𝛽0 = -0.4740** 

𝛽1 = 14.5119*** 

𝛽2 = -41.2996*** 

𝛽3 = 27.7351*** 

0.02684178 

1.815722 

 

 

 

0.7768 0.7698 0.000 
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T = 100, D.S. = 

4, 𝜌 = 0.5 

 

 

PSM (K 

=0.24) 

𝛽0 =-0.08351 

𝛽1 = 12.12945*** 

𝛽2 = -35.37438*** 

𝛽3 = 23.59913*** 

0.02043681 

 

1.739182 

 

 

 

0.8046 0.7984 0.2133 

T = 100, λ = 4, 

𝜌 = 0.8 

 

GML 

𝛽0 = 0.3072 

𝛽1 = 6.7774*** 

𝛽2 = -24.1129*** 

𝛽3 = 17.3734*** 

0.0007463417 

0.19754 

 

 

 

0.5267 0.5119 0.000 

T = 100, λ = 4, 

𝜌 = 0.8 

 

 

GCV 

 

𝛽0 = -.0.09507 

𝛽1 = 13.05444*** 

𝛽2 = -38.07188*** 

𝛽3 = 25.36748*** 

0.0001467109 

2.6543 

 

 

 

0.6445 0.6333 0.013 

T = 100, λ = 4, 

𝜌 = 0.8 

 

UBR 

 

𝛽0 = -0.2412  

𝛽1 = 14.2442*** 

𝛽2 = -38.4952*** 

𝛽3 = 24.5294*** 

0.01991017 

 

1.532589 

 

 

 

0.5904 0.5776 0.071 

T = 100, λ = 4, 

𝜌 = 0.8 

 

PSM (K 

=0.36) 

𝛽0 = -08702 

𝛽1 = 10.95087*** 

𝛽2 = -33.32863*** 

𝛽3 = 22.61821*** 

0.012795325 

 

0.056745 

 

 

 

0.849 0.8207 0.4532 

 

Figures 1 to 3 below clearly show the comparisons of the behaviors of the cubic 

smoothing spline selected by GCV, GML, and MCP for sample sizes 20, 60, and 100 

respectively. It was observed that the observed value of Generalized Cross-Validation was 

closer to the fitted/estimated value when compared to the  

 

Figure 1. Cubic smoothing spline and fitted curve using GCV, GML, UBR, and PSM, (K=0.04) for T 

= 20, rho = 0.2, 0.5, and 0.8, sigma = 0.8 
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Figure 2. Cubic smoothing spline and fitted curve using GCV, GML, UBR, and PSM, (K=0.04) for T 

= 60, rho = 0.2, 0.5, and 0.8, sigma = 0.8 

 

Figure 3. Cubic smoothing spline and fitted curve using GCV, GML, UBR, and PSM, (K=0.04) for T 

= 100, rho = 0.2, 0.5, and 0.8, sigma = 0.8 

5. Application 

Table 4. Test for autocorrelation for the real-life data in the presence of Autocorrelation  

Box-Ljung test 

data: Residuals 

X-squared = 96.7395, df = 1, p-value < 2.2e-16 

 

H0: The data are independently distributed, or the correlations in the population from 

which the samples are drawn are zero 

HI: The data are not independently distributed; they have serial correlation 

Decision: autocorrelation exists in the model 

Table 5. Stationarity test for the real-life data with smoothing parameters  

Augmented Dickey-Fuller Test 

data: Residuals 

Dickey-Fuller = -3.6471, Lag order = 5, p-value = 0.03021 

alternative hypothesis: stationary 
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H0: The observation is not stationary, there exists a unit root 

HI: The observation is stationary, there is no unit root 

Decision: The data is stationary, there is no unit root 

Table 6. Cubic Smoothing Spline regression and Predictive Mean Square Error Result for Real-

life data  

Smoothing Methods 𝛽𝑖 Df Selection criteria 

PMSE Multiple R-

Square 

Adjusted R 

Square 

Predicted R 

Square 

GML 𝛽0 = 9.046 

𝛽1 = -1.275 

𝛽2= 5.687 

𝛽3= -9.716 

209 

209 

209 

209 

42.77 

 

 

 

0.5997 0.5940 0.102 

 

GCV 

 

𝛽0 = 9006 

𝛽1 = -1.230 

𝛽2= 5.677 

𝛽3= -9728 

209 

209 

209 

209 

45.78 

 

 

 

0.6004 0.5947 0.118 

UBR 

 

𝛽0 = 9.162 

𝛽1 = -1.524 

𝛽2= 5.840 

𝛽3= -9.987 

209 

 209 

209 

209 

92.80 

 

 

 

0.6014 0.5957 0.099 

PSM (K = 0.04) 𝛽0 = 9.187 

𝛽1 = -1.568 

𝛽2= 5.863 

𝛽3= -1002 

209 

209 

209 

209 

32.934 

 

 

 

0.6021 0.5964 0.4550 

 

Table 6 above presents the predictive mean square error of the real-life data on the 

standard international trade classification (SITC) export and import price indices in 

Nigeria between 2001 and 2020. It was discovered that the proposed smoothing Method 

(PSM) had the least predictive mean square error (PMSE) a confirmation that it is the 

preferred smoothing method for simulated and real-life data. The result also presented 

the multiple, adjusted, and predictive R-Square. It can be inferred from the adjusted R-

square of the proposed smoothing method of 59.6% that it has the best fit among the four 

smoothing methods. 

The plot above presents the smoothing curve of the annual standard international 

trade classification import price index dataset in Nigeria from 1970-2020. The data used 

for analysis were earlier tested for stationarity and autocorrelation. As can be seen from 

Figure 4 the proposed smoothing method with optimal smoothing parameter λ = 

0.062439908 and for weighted value (k =0.04) was used to carefully analyze the residuals 

to try to detect disturbances or errors in the stationary part of the series. It was observed 

that the PSM curve is very close to the real-life data and also provides a good fit.  
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Figure 4. Smoothing curve of SITC import and Export price index dataset (dark blue) and fitted 

value (red) with Smoothing Parameters Chosen by PSM (0.04). 

The plot above presents the smoothing curve of the annual standard international 

trade classification export price index dataset in Nigeria from 1970-2018. The curve 

presented in Figure 4 indicated that the proposed smoothing method with optimal 

smoothing parameter λ = 0.062439908 and for weighted value (k =0.04) was used to 

smooth the residuals for disturbances or errors in the stationary part of the series. It was 

observed that the PSM curve is very close to the real-life data and also provides a good fit. 

6. Conclusion 

The results generated from the simulation and real-life data conducted in this study 

have provided great insight into the smoothing method whose model produces the best 

fit for the time-series observations, the model whose smoothing method does not over fit 

data, the optimum value of the proposed smoothing method and the performance of the 

smoothing methods when autocorrelation is present in the error term. 

The result of the goodness-of-fit test revealed that the proposed smoothing method 

had the best-fit model among the competing smoothing methods on the simulated and 

real-life data. The proposed smoothing method’s model fitted without any defection and 

shortcoming under cubic spline functional form with the highest adjusted R-Square of 

0.9618, at T = 20, D.S. = 4, 𝜌 = 0.2, and the weight value of k = 0.04. 

The finding on the effect of autocorrelation in the error terms of the four smoothing 

methods considered in this study showed that the proposed smoothing method (PSM) 

works well for all levels of autocorrelation (ρ = 0.2, 0.5, and 0.8). It also provided a better 

estimate,  proved to be the most preferred smoothing method than the GML, GCV, and 

UBR, and does not overfit a time series observation with autocorrelation in the error term 

at a predicted R-square of 0.6218. This result is slightly similar for GML with; [25] and [35] 

but differs from [24], [36-39].  

The study on the optimum value of the Proposed Smoothing Method (PSM) 

indicated that the smoothing method performs at an optimal level when (k = 0.04) with a 

predictive mean square error value of 0.046857, multiple R-Square of 0.9678, Adjusted R-

Square of 0.9618 and predictive R-square of 0.6428. 

The result on the effect of sample size on the performance of the four smoothing 

methods shows that the proposed smoothing method is computationally more efficient 

and consistent, and works well at all sample sizes (T = 20, 60, and 100) Monte-Carlo 

experiment. The plots and results presented in Tables and Figure 1 – 4 indicated that; 
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GML, GCV, and UBR showed signs of inefficiency for all the time series sizes (T = 20, 60, 

and 100). This finding is quite different from; [25], [35] and [40].  

The findings from the result also proved the Proposed Smoothing Method (PSM) to 

be more efficient among the four competing smoothing methods for real-life data. This 

result disagrees with the finding by [41]. 
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